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J .  Phys. A: Math. Gen. 20 (1987) 4613-4635. Printed in the UK 

New perspective on the U( n) Wigner-Racah calculus: 
11. Elementary reduced Wigner coefficients for U( n) 

R Le Blanc? and K T Hecht$ 
Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA 

Received 16 September 1986, in final form 11 March 1987 

Abstract. Exploiting the powerful formalism of the vector coherent state theory expounded 
in part I ,  the group theoretical content of the complementarity principle and a novel 
interpretation of the operator pattern of Biedenharn and Louck, we rederive in a simple 
fashion all U(n)  : U( n - 1) reduced Wigner coefficients for the elementary U( n )  tensors. 

1. Introduction 

In their successful programme to give a full implementation of the Wigner-Racah 
calculus for the unitary groups, U(n) ,  Biedenharn and Louck (see the review article 
by Louck (1970)) introduced a set of abstract tensor operators which carry the basic 
structure of this calculus. The recent realisation (Le Blanc and Rowe 1986a, b) that 
a strict group theoretical meaning can be assigned to the operator pattern used in their 
classification has led to the possibility of their very explicit construction in an ( n  - 1) x 
n-dimensional space of Bargmann variables (Bargmann 1962). 

We thus make use of this recent development to propose a new approach simplifying 
to a large extent tensorial computations in Bargmann spaces. We exploit the powerful 
formalism of the vector coherent state theory expounded in part I (Hecht et a1 1987b), 
the group theoretical content of the complementarity principle and this novel interpreta- 
tion of the operator pattern of Biedenharn and Louck to rederive in a simple fashion 
all U( n) : U( n - 1) reduced Wigner coefficients for the elementary { l k O } n  U( n )  tensors, 
coefficients first derived by Biedenharn and Louck (1968) using arduous boson poly- 
nomial manipulations. 

These coefficients, being the basic building blocks for the construction of generic 
U( n) tensors, are fundamental to any attempt to unravel in a canonical way the outer 
multiplicity problem for the unitary groups. In fact, these coefficients are at the root 
of the elaborate structure built up by Biedenharn and Louck in order to give a canonical 
foundation to the U( n) Wigner-Racah calculus. A more straightforward rederivation 
of their values is thus a necessary first step in any attempt to improve on their results. 
We recall that theirs is an elaborate structure articulated on what they have coined as 
the ‘pattern calculus’. 

t NSERC Postdoctoral Fellow, now at A W Wright Nuclear Structure Laboratory, Yale University, New 
Haven, CT 06520, USA. 
$ Supported in part by US National Science Foundation. 
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We thus confirm but also enlarge on the results of Biedenharn and Louck since 
we unravel the simple structure of these coefficients. By structure, we not only mean 
their algebraic expressions but also the nature of their basic components. In fact, we 
show that the elementary reduced Wigner coefficients are the product of a multiplicity- 
free U( n - 1) Racah coefficient times some simple dimensional factors and normalisa- 
tion factors originating from the vector coherent state theory of I .  We note that the 
present approach has already been used with similar end results for the computation 
of the fundamental Wigner coefficients for the non-canonical group chains SU(3) 2 O(3) 
(Le Blanc and Rowe 1985a, b) and SU(4) 2 O(4) (Hecht et a1 1987a). 

2. Bargmann tensors in a U(n - 1) X U(n) Bargmann space 

The elementary U(n)  tensors (Biedenharn and Louck 1968) to be constructed below 
act in U(n)  bases classified according to the canonical subgroup chain 

U(n) 2 U(n - 1) 2.. * 2 U(1). (2.1) 

Basis states belonging to a unirrep { m } ,  = { m l n ,  mZn,  . . . , m n n }  of U(n)  will be enumer- 
ated by a Gel’fand pattern 

It will be assumed that the reader is familiar with the Gel’fand notation and the 
resolution of the weight multiplicity problem in terms of the so-called ‘betweenness’ 
conditions on the pattern entries (see, e.g., Louck 1970). 

The explicit construction of the elementary U( n )  tensors of this investigation leans 
heavily on the equivalence of SU(n)  and U(n) .  It is well known that one needs at 
most d Bargmann n-vectors 

g’ = &, . . . ,  g:) l s i c d  

in order to achieve the construction of a basis of Bargmann states spanning a d-rowed 
unirrep of U(n) ,  where we refer to U(n)  representations with 

mdn # 0 m d + l , n ,  md+l,nr. * .  9 mnn = o  
as d-rowed representations of U( n). Generic SU( n) unirreps, being equivalent to 
d = (n  - 1)-rowed irreps of U(n), can thus be built in terms of n - 1 U(n)  Bargmann 
vectors. 

Polynomials of degree k in the gj carry a totally symmetric representation {kO},, 
of the group U(dn). (As in I, a dot over an index signifies its repetition, and in this 
case indicates dn - 1 zeros.) Consideration of the transformation properties of these 
polynomials under the upper U ( d )  and lower U(n) group actions and the use of the 
complementarity theorem (Baird and Biedenharn 1963, Moshinsky 1963) show that 
under the decomposition 

U ( d n ) . l U ( d ) x U ( n ) : { k o } d n . l =  2 i m > d  x { m } n  E mtn = k (2 .3~1)  
d 

r = 1  
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(g 

{;,I. (2.4) 

with 

(2.66) 

Here, N ( { m } , )  is a normalisation factor given by 

(2.7) 

with pij  = mU + j - i and where we agree to take the positive square root. It is verified 
that, with m,, set to zero, the highest weight state (2.6) is also the highest weight state 
for the group product U( n - 1 )  x U( n ) .  

In order to provide a canonical resolution to the outer multiplicity problem, 
Biedenharn, Louck and collaborators, in a series of articles (see Louck 1970, Biedenharn 
and Louck 1972, Louck and Biedenharn 1973, Biedenharn et a1 1972, 1985 and 
references therein) developed an elaborate formalism through which they postulate 
the existence of an abstract set of SU(n) tensor operators {Y} classified by upper 
(operator) patterns. This set is denoted +,) (2.8) 

where r is an operator (inverted Gel'fand) pattern and where the lower pattern m is 
a usual lower U( n - 1) Gel'fand pattern which labels a basis for the U( n )  tensorial 
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unirrep {m},. The operator pattern is supposed to characterise the structural and 
tensorial properties of Y. The most important property for the purpose of this work 
is the fact that the upper pattern specifies the shift properties of the tensor, i.e. when 
applied to a state belonging to the U(n)  unirrep {m'},,, the tensor 9 maps this state 
to a new unirrep labelled by 

( 2 . 9 ~ )  

where the shift A is an n-vector 

the components of which are given by 

( 2 . 9 ~ )  

Other important properties like the null-space property, the inclusion property and 
the limit properties, relevant to the solution of a generic multiplicity case, are thoroughly 
reviewed in the above-mentioned references and will be of no immediate concern to 
us since we will only consider here the coupling of multiplicity-free tensors, more 
precisely the elementary and fundamental tensors, for which these concepts need not 
be enlarged upon. 

The elementary abstract U (  n) tensors are identified by the partition { I k O } , ,  1 s k 6 
n - 1, with associated Young tableaux forming a vertical array of k boxes representing 
an antisymmetrised tensor of rank k. The selection rule for their multiplicity-free 
coupling is simple: in a Kronecker product the boxes are added to k of the rows of 
the original tableau specified by the upper pattern, with at most one box added to a 
given row. The coupling is represented by 

. .  

In ( 2 . 1 0 ~ )  
A ' k ' ( i l r i 2 , . . . , i k )  

(2. loa)  

(2.10b) 
is the n-vector given by ( 2 . 9 ~ )  and has vanishing entries everywhere except for the k 
components ( i l ,  i 2 , ,  . . , i k )  which have value unity. The n-vector A ' k ' ( i l ,  i 2 , .  . . , i k )  is 
thus a permutation of the n-vector ( lkO). The fundamental tensors, with k = 1, are a 
special case of the elementary tensors, with A ( ' ) ( i )  specifying the index i of the row 
to which the single box is added in the Kronecker product. Note that, for the elementary 
tensors and, more generally, for any multiplicity-free coupling, there is a one-to-one 
correspondence between the upper pattern and the shift A. Therefore, the shift 
A ( k ) (  i,, i2,  . . . , i k )  will here uniquely identify the parent tensor. To be consistent with 
the appendix, we adopt the convention 

1 S i l  < i 2 < .  . . < ik  s n. 
In the above discussion, the elementary shift tensors 9 were abstract objects without 

a specific realisation. Their explicit realisations T in a U(n - 1) x U( n) Bargmann 
space can be given in terms of (multiplicative and/or differential) Bargmann operators. 
This was proved for SU(3) (i.e. n = 3) by Le Blanc and Rowe (1986a, b) and the 
generalisation to U(n  - 1) x U ( n )  is straightforward. For example, the n - 1 vectors 
g , g , . . . , g"-' can be shown to be shift tensors with respective shifts 1 2  

A ( ' ) (  10. . . 01, A("(O10.  . . O), . . . , A'"(0.  . . 0 1 0 )  
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but only when acting between U(n - 1 )  x U(n) states of highest weight in their upper 
patterns. Similarly, the unnormalised antisymmetrised products of k Bargmann vectors 
g'"2 ' A  defined similarly to (2.6b) are {lkb} shift tensors with shift properties 
A'k'( i ,  , i2 ,  . . . , i k )  when forced to act between U(n - 1) x U( n )  states of highest weight 
in their upper patterns. 

Although satisfying from the point of view of duplicating the shift properties of 
the abstract set of tensors of Biedenharn and Louck in a Bargmann representation 
space, the above prescription severely curtails the possible useful exploitation of the 
group of upper transformations. We therefore adopt in this investigation a somewhat 
less restrictive procedure by using the fact that, contrary to Biedenharn and Louck 
who did not impart a group theoretical meaning to the upper pattern, we can impose 
such a functional meaning on the upper pattern. More precisely, we require the upper 
pattern to reflect the tensorial properties of a Bargmann tensor under the U(n - 1 )  
complementary group action, the complementarity theorem providing the necessary 
justification for this prescription. It is then easy to see that the shift properties of an 
unnormalised and antisymmetrised Bargmann tensor of the form 

T( { lkO} ) (g )  = g A g A .  . . A g ( k  times) (2.11) 

with now an unspecified U( n - 1) upper weight can be enforced by coupling this tensor 
and the initial representation to the desired final representation using only the (multi- 
plicity-free) upper group action. 

The construction (2.1 1 )  is immediate for tensors of U( n )  character { lk6) with A,, = 0 
but would lead to difficulties for U( n - 1 )  x U( n )  tensors of the type 

{ 1 k-lOln - 1 

.T { I k o > n  (2.12) ( (mIfl-1 ) 
which have A n  = 1. Such tensors would add a box to the nth row of the initial tableau 
which is impossible in the U(n - 1 )  x U( n) Bargmann space since all Young tableaux 
of this Hilbert space have at most n - 1 rows. The way out of this apparent impasse 
is through the use of the SU(n)  equivalence of Young tableaux with columns of length 
n. By adding a square to row n, an operator of type (2.12) would create a tableau 
which is SU(n)  equivalent to a tableau from which a single column of n squares can 
be removed. A { l k b }  tensor, with ik = n, which would have added a square to row n 
is thus equivalent to a tensor which removes n - k squares from rows i;, i s , ,  . , , i L - k  
which are the complements of i, , i2, . . . , ik. Such tensors can now be built from ( n  - k )  
antisymmetrical coupled derivative operators in the Bargmann space, where we use 
the fact that df = a/ag; is an annihilation operator for gf. From a construction point 
of view, we thus subtract from all entries of the double pattern (2.12), with mnn initially 
set to zero, the non-vanishing An value so as to bring its new A; value to vanish. This 
unambiguously prescribes the U ( n  - 1) x U( n )  tensorial properties of the Bargmann 
tensors (2.12) which are thus reset to 

T (ik6n-k)n ( g )  T (0 ,  - in-k}n ( g )  - (d '  A 3' A .  . . A a n - ' ) .  (2.13) 
{i k - I o n  - k > n  - 1 

( {m)n j f O k - 1  - in-kin-1 

( i i - i n - l } n - l  j 
The tensors (2.13) have the right SU(n) transformation properties and, as required by 
the Hilbert space structure, vanishing nth shift component. 
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{ m o + A ' k ) ( i ) } n - l  =( {m"+A'"(i)} ,  
{ m  + A ' k ) ( j ) } n - l  

To conclude this section, we caution the reader not to be induced into thinking 
that the construction of the Bargmann tensors is straightforward in the most generic 
case of multiplicity. In fact, except for the multiplicity-free cases and the important 
case of SU(2) reviewed in part 111 (Le Blanc 1987), there is still no complete and 
unambiguous set of rules for their construction as best exemplified by the two substan- 
tially different approaches taken by Le Blanc and Rowe (1986a, b) in regard to the 
resolution of the SU(3) multiplicity problem. Work is in progress to try to incorporate 
the abstract findings of Biedenharn and Louck into the present framework since it is 
their claim that their approach yields a canonical solution to the U( n) outer multiplicity 
problem in general. 

{ m < ' + a ' k ' ( i ) ) , v - ,  
{ i k O ) n - l  {mo}n-l [ T( I i k O } ,  1 {m"}, 11 (3 . la)  

{ k - I E o } ,  - 1 {m>n - 1  { m+A" '( j ) } , , ,  -, 

3. Reduced Wigner coefficients for the elementary tensors 

(3 . lb )  
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( { i k o ] . - l  )( { i k o } n - l  

T { i k o } n  { i k O } , ,  

{ i k - l o } n - l  { i k - l b } n - l  

( ( 0 ) n - l  ) {:;::;;I) B {lO-l}n 
( 6 -  1In-1 { i k 0 I n - ,  

(3.3) 

obtained from the tensor 

{ i k o } n - L  

{ i k o } n  

(I i k 6 ) n -  I) 

with maximal lower U( n - 1)  partition through the action of the lowering operator 
B, = Eni (see I and note that [ Eni, g ; ]  = g!,). The square bracket on the right-hand side 
of (3 .3)  is a U(n - 1) coupled commutator defined similarly to the coupled expression 
(2.26) of I while the reduced matrix element multiplying the tensor on the left-hand 
side is given by (2.31) of I. 

The total doubly reduced matrix element is given by 

t Upper and lower U(n - 2 )  3 U ( n  - 3 ) .  . .I U(1) labels are quietly understood for both the bra and the 
resulting ket in (3.10).  These labels can assume any allowed values but must match in both bra and resulting 
ket for the matrix element (3.1~1) not to trivially vanish. 
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{ m o - A ( k i ( i ) } n - l  ( { m o - A ' k ' ( i ) } n  
{ m  - A ( k ) ( j ) I n - I  

( 0 -  i k } n - l  {m'}n-l 
T( {O-id, 1 { m o l n  1 

{ O - i k } n - l  i m 1 n - I  

( 3 . 5 a )  

( 3 . 5 b )  

A ( k l ( i ) } n - l  ( 0 -  i k } n - l  
= ( { ~ ~ ' - A ( k ) ( i ) } n  l i T (  ( 0 -  l k } ,  )lrTi'y:l) 

(3 .5c )  

and where, because of the Bargmann space structure, we require ik # n. This restriction 
will be lifted below (see (3 .13 ) ) .  We refer the reader to the appendix of I for the 
definition of the phase 4 and for the various conjugation transformations of Wigner 
and Racah coefficients used throughout this paper. 

( { { m "  - A ' , ' ( i ) I n  { O - i k } ,  

The total doubly reduced matrix element is now given by 

m o  - A'k)( i ) }n- l l l  .( {0 - i k } n - l ) ~ ~ { ; o } n - l ) )  

- ( - 1 - b(  { m" ) ,, - ,  - d ((6- I I,, ~ I I - @ 1 i m " -A'  i 1) ,, -, 
d ( { m " ] , , ) - d ~ ( o - ~ ~ } , , ) - d ( { m " - A ~ ~ ~ l i ) } , , )  x (-1) 
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through the use of simple conjugation transformations for both U( n - 1) and U(  n) 
(appendix of 1) and of (3.4). 

Now, from equation (2.26) of I, we can re-express the ket in (3 .5b )  in terms of its 
corresponding highest weight and a polynomial in the lowering operator B, and we 
thus rewrite the coupled expression in (3 .5b)  as 

{ m ' I  -A(  A I (  i 1) ,, I 

- I  
x { m  - A ' k l ( j ) } { O -  lk}; { m } { m "  - A ' k ' ( i ) } ) K  

(3.9) 

Note that no sum is required in the recoupling since the betweenness conditions of 
the double Gel'fand pattern restrict the last entry of the U( n - 1) Racah coefficient 

U ( ( 0 -  w } { m " } { m  - A ( k ' ( j ) } { O -  lk}; { m } { m "  - A ' k ) ( i ) } )  

= U({wO}{m - A ~ k ' ( j ) } { m o } { l ~ O } ;  {m" -A'"}(m}) 

to { m "  - A ( k l ( i ) } .  Now, since the tensor 
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Io- i k 1 n - l  [ .( {o-ik}n ) 
(0- i k } n - l  

{ m f ' - A f h l ( i j ) , , . ,  
(m"In-1 

{ m o } n  )] 
{ m " } , - ,  i , , , , ' - A [ h )  ( i  ) I , , - ,  

x (3.10) 
{m' - A ' k l ( i ) } n - l  

{ m "  - A ( k ' ( i ) } n - l  
{m"-A'k ' ( i ) }n  

When (3.9) and (3.10) are introduced in (3.5) and using the expansion (2.26) of I 
once more, we finally obtain 

- ( - 1 d ( ( m " I,, I-+({+ 1 I!, ) -  6 ( < m " -A( I (  i I} , ,  - 

( - ) d i { m"),,  I 1 - d ((0- i },, -, ) -+({ m" - A t k  i Jln I 1 

x U ( {  wO}{m - A(kJ(j)}{mo}{ikO}; {m" - A(k'(i)}{m}) 

dim({ m" - A i k ) (  i ) } , )  dim((m"},~,)  
dim({ rn" - A(k)( i)}n-l)  dim({ m o } , )  

(3.11a) 

Using equations (2.33) of I for the dimension factors, (2.23) of I for the K factors, 
(A2) of I for the phase factors and (A27) and (A28) for the Racah coefficient, (3.11a) 
then has the explicit expression 

i # ( i , , i , .  .... i k  I 

(3.11b) 

The phase in (3.11a) can be shown to be equal to k ( k +  l ) ,  i.e. it is always even. 
Thus the phase factor in (3.11b) is strictly associated with the phase of the U(n - 1 )  
Racah coefficient (see (A12) and (A27)). Also note that, here and in the following, 
we normalise our results so that they can apply to the cases where the initial representa- 
tion is a generic U(n) representation, i.e. when m,, is now a generally non-vanishing 
quantity unlike the case valid for the U( n - 1 )  x U( n )  Bargmann polynomials. Such a 
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normalisation is easy to perform by subtracting the quantity pnn = m,, from ail the pv 
terms originating from the various factors in the basic formula (3.1 l a ) .  

Complex conjugation gives us the reduced Wigner coefficient 

{ i k b l n  /I {mo+A(k)( i )}n)  ' { 1 k b ) , , -  { m + A'k'( 
- - ( - 1 ) d ( i  m i n  -, )+d ( {  I Of,, I ) -  d ( (  m+A' '(i)) ), I ) ( - 1 ) d({ m " ) ,  )+ +( { 1 A 01" 1 - C$ ( {  "'+A' ' ( I ) ) , , )  ' 

dim({m" +A(k)(i)},, ( dim({m"ln) dim({m+A(k)(j)},,-l) 

( 3 . 1 2 ~ )  

(3 .12b) 

( 3 . 1 2 ~ )  

Defining the root conjugate of { i k O } n  by { l , , -kO} , ,  and the Hermitian conjugate of 
{ l k b } n  by (0- i k } , ,  we will, for the case ik = n, use the Hermitian conjugate tensor of 
the root conjugate of the original { 1 kb}n tensor to compute the required reduced Wigner 
coefficient (see (2 .13)) .  We thus require 

(3.13) 

where the complements ( i ' )  of ( i )  and ( j ' )  of ( j )  are defined such that, for example, 

{ i l ,  i 2 , .  . . , ik}+{ii ,  i i , .  . . , ik -k}={1 ,2 , .  . . , n}. 

We then find, using the phase identity 

and after an appropriate change of variables, that (3 .13)  shares the same expression 
with ( 3 . 1 2 ~ ) .  Equation ( 3 . 1 2 ~ )  is thus volid for the case ik = n. Conversely, (3 .11b) is 
now assumed valid for i k  = n. 
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( { O - i k } n - l  )( { O - i k l n - l  

T ( 0 -  l k } ,  { O - i k } ,  

{ o - i k - , } n - l  ( 0 -  i k - , } n - l  

( { O I n - I  ) {o-i:};~;) 
A (10-l} ,  ( 0 - l k } ,  

{ io},- ,  ( 0 -  i } 

dim((0- lk - l }n - l )  
dim({m}n-l) dim((0- l k } , , - , )  
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equation (2.32) of I for the reduced matrix element of A, the phase convention of the 
appendix of I and the preceding results concerning the reduced matrix elements of 

we obtain for the case j k  = n 

(:mln-i; ( 6 n - k  - l k - l } n - i  { m  - A ' k ) ( j ) } n - l  

m o l ,  { 6 - l k } ,  /I { m o - A ( k ) ( i ) } n )  

where in order to condense the notation, it is understood that one must take the limit 
pn,n-l + CO in (3.18), therefore ignoring all factors involving this term. Y,  in (3.18), is 
a sum given by 

( 3 . 1 9 ~ )  

By using contour integration of the complex function 

it is easy to show that Y = ( n  - k ) .  We therefore note that with the convention that 
one must take the limit pn,n-l + cc in (3.18), this last equation has exactly the same 
functional dependence on the p as (3.11b). This fact brought Biedenharn and  Louck 
to claim that there is a hook permutational symmetry among the various reduced 
Wigner coefficients. This claim should be taken with some caution for, although true 
for the functional dependence of the reduced Wigner coefficients on the p ,  the statement 
is seen not to apply to (3.11a).  Structurally speaking, ( 3 . 1 1 ~ )  does not generalise to 
the case i k ,  j k  = n since the U( n - 1 )  Racah coefficient then loses its significance. 
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4. Summary and discussion 

We have shown that the U( n)  : U( n - 1) Wigner coefficients pertaining to the coupling 
by the elementary tensors are given by the structural expressions (3.126) and ( 3 . 1 1 ~ )  
valid for 

1 < i ,  < i,<. . . < ik < n 1 j ,  < j,<. . . <j, < n 

and generic SU(  n )  ( mnn = 0) unirreps. 
We recall the origin of the various terms in these equations. The terms like 

dim({m"},) and dim({m},,-,) are the dimensions of the respective U ( n )  and U(n - 1) 
representations {m'},, and {m}"-, . The factors U( ) are simple multiplicity-free U(n  - 
1) Racah coefficients calculated in the appendix. The terms in K are normalisation 
factors obtained from the vector coherent state theory of I. Note that there are no 
terms involving N (  ), the normalisation factor of the Bargmann polynomials (2.7). 
This is most satisfying since expressions for the Wigner coefficients should not explicitly 
refer to the space used for their computation. 

More generally, lifting the restrictions on ik and j,, and more explicitly, we have 
shown that the U ( n )  : U(n  - 1) Wigner coefficients are given by ( 3 . 1 2 ~ )  and (3.1 16) 
valid for 

1 G i ,  < i , < .  . .< ik G n 1 Sj, <j2<. . . <jk s n 

and generic U( n) ( mnn # 0) unirreps but where one must take the limit pn,n- l  + cc. 
The fina! phase factors resulting from the computation correspond to a generalisa- 

tion of the Condon-Shortley phase convention for SU(2) and naturally arise within 
the framework adopted here. We recall that we have introduced only two specific 
rules for fixing the phases appearing at various computational stages. One pertains to 
the sign associated with the hooks (see the appendix) and is responsible for the term 
S ( j s  - i,). The other, defined in the appendix of I ,  is responsible for the conjugation 
phase 

(-1)ZZ=JJ,-I.' 

The only phase factor left to consider is 
(-l)k(k-l)/2 

and originates from the tensor (antisymmetrical) structure itself. 
An interesting point to mention is the fact that the algorithm of § 3 is truly recursive 

in n, i.e. the computation of U ( n ) :  U(n  - 1) reduced Wigner coefficients presupposes 
only the knowledge of U( n - 1) Wigner and Racah coefficients for, as shown in Le 
Blanc and Hecht (1986), the knowledge of the U( n - 1) x U( n )  normalisation factors 
(3.4) and (3.6) is a direct consequence of the knowledge of the U(n  - 1) x U( n - 1) 
reduced matrix element (3.10). Thus, contrary to the approach of Biedenharn and 
Louck which requires an a priori  knowledge of U( n)  x U( n )  reduced matrix elements 
in order to allow the computation of the elementary U( n)  : U( n - 1) reduced Wigner 
coefficients (the substance of the boson factorisation lemma), the algorithm of 9 3 is 
much more satisfying on computational grounds since it clearly demonstrates that a 
U( n )  Wigner-Racah calculus can be performed entirely in a U( n - 1) x U( n - 1) 
framework. The extra (nth) dimension only appears through the application of raising 
and lowering operators A and B on U(n - 1) states and tensors (see (3.14)-(3.19)) and 
are themselves considered as U( n - 1) tensors (see I ) .  
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Biedenharn and Louck (1968) gave a graphical representation of (3.11) and ( 3 . 1 2 ~ )  
which, although extremely simple, does not contain the group theoretical information 
of ( 3 . 1 1 ~ )  and (3.12b). It is this graphical representation which they coined the ‘pattern 
calculus’; the reader is referred to their work for an enunciation of the rules of this 
calculus. 

We have thus duplicated and improved on the results of Biedenharn and Louck 
since a major result obtained in this paper, which cannot be appreciated from the 
Biedenharn and Louck mode of derivation, is that, except for the i k ,  j k  = n case, the 
elementary Wigner coefficients are essentially U( n - 1) Racah coefficients. In fact, 
comparing equations (A27) and (A28) and (3.11b) and (3.12c), one notices that, except 
for the contribution of the i = n factors in (3.11b) and (3.12c), the Wigner coefficients 
are U( n - 1) Racah coefficients. 

We conclude that the combination of two powerful tools, namely the vector coherent 
state theory and the complementarity principle, in addition to a strict and novel 
interpretation of the operator patterns, helped us to elucidate the structure of the 
elementary Wigner-Racah calculus for the U(n)  groups and have reduced it to an 
exercise in recoupling techniques with its foregoing simplicity. Also, since the Racah 
coefficients required were computed using symmetric group techniques, our results 
tighten the already known strong relationship between the two groups. 

Part 111 (Le Blanc 1987) of this series shows that the present framework allows the 
easy computation in closed form of all the SU(2) Wigner coefficients. Also, we 
generalise the present results to the case of symmetric U(n) tensors to derive an 
interesting relationship between U(2) Racah coefficients and U( 3) symmetric tensors. 
This relationship, the well known Elliott-Biedenharn-Racah identity but in a new 
parametrisation, enables us to derive a recursion formula for U(2) Racah coefficients 
which is solved to provide a closed form for these coefficients. 

Finally, we intend to address in a future work the question of the construction of 
generic Bargmann tensors in order to see if the present approach would yield a 
transparent solution to the multiplicity problem. 

Appendix. Derivation of multiplicity-free U( n )  Racah coefficients using symmetric 
group techniques 

We compute in this appendix the following classes of multiplicity-free U(n)  Racah 
coefficients: 

(1) U({gHll{f H w  - 11; {g’){w}) (A9) 

U({gHw - 1 H f  H1); {f’Hwl) (‘410) 

(2) U({g}{l}{f}{lk-l}; {g’}{lk}) (A131 

U({g}{lk-l}{f}{l}; {.f}{lk}) (A141 

(3) U({w){f2}{f}{lk); {fi2){f23)) (A27) 

where {f} is an arbitrary U ( n )  unirrep and where {w} and {Ik} are symmetrical and 
antisymmetrical unirreps, respectively. 

The first two classes of coefficients have already been discussed by Kramer in terms 
of Young frame axial distance expressions (Kramer 1967); the third class follows from 
a generalisation of results derived in Hecht (1975). 
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I I I 

Figure 1. Definition of the axial distance T ~ , ~ , .  
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Thus for the product of all b, in row k and k smaller than the row of 6, = i 

Note that for k greater than i, the expression, with a change of sign in both the 
numerator and the denominator, still holds. For k = i, the product (A8) reduces to 
( L - g , ) .  Thus 

Similarly, using (A3 b) ,  we find 

In the antisymmetric case, the wavefunction is given in a s k  x 
( S N - k  2 S N - k - 1  2 . .  .I sz 2 si) basis: 

j# i j#! 

where the phase of the initial s k  x S N - k  state is fixed through the convention 

and 

+ 1  i 3 j  
-1 i < j .  

S (  i - j )  = 
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For the third class of Racah coefficients U ( { w } { f 2 } { f } ( l k } ;  {fl2}(fi3}) where {f} is 
an arbitrary U ( n )  unirrep and where { w }  and { l k }  are respectively symmetrical and 
antisymmetrical unirreps, we consider for the bra side 

( m  ; { I . . . bLliW}{ai . . . a i } { i k ) Y N - w - k . .  . Y i l r )  if) bf 

{ I }  C f J  * ‘ I  I if*)) = [ [ [ $ * ( r l ) ‘ ” x . .  . x + * ( r N - w - k )  I icr ( r N - w - k + l ,  . , r N - - )  I 
W I  { f i  x $ * ( r N - w + l , . .  . *  r N ) ‘  I m  

= U ( { f 2 1 { l k } { f 1 { W } ;  { f 2 3 } - - { f l 3 } - P 2 , 1 3 )  
{ f 1 3 ) P 2  13 

x [ [ $ * ( r l ) ” ’ x .  . . x $ * ( r N - w - k ) i l ) ] i f Z ’  

(A15) [ $ * ( r N - w - k + l r . .  * 3 r N - ~ ) { ’ ~ ’ $ * ( ~ N - w + l , .  * 3 r N ) ‘  W I  1 iflJ Im t f IP2  13 

and for the ket side 

(rl!?; {ai . . . a k ) { i , ) { b i  . . . b w } { w ) y N - w - k . .  . Y I )  
( 1 )  ‘ / I  w )  i f i l l  = [[[$(rl)‘l’x.. . $ ( r N - f i - k )  1 $ ( r N - w - k + l ,  * .  . 9 r N - k ) ‘  1 

( 1 , )  i f}  
$ L ( r N - k + l ? . .  . 9 r N )  l m  

= c U ( { f 2 } { w } { f } { l k } ;  { f 1 2 ) - - { f 1 3 ) - P 2 , 1 3 )  
if l316’2 13 

( 1 )  if2} 
[ [ $ ( r l ) { ”  x .  . . $ ( r , V - w - k )  1 
[ $ ( r N - % - k t l ,  * * * 9 r N - k ) ’ W ’ $ ( r N - k + l r . .  . 9 N ){Ii} 1 if,,, I m  i f b 2  13 

- ( - l )~ ({ l , } )+~( iwI ) -~ ( i f13 ) )U({ f}{  - 2 W } { f ) { l k } ;  { f U - - { f i 3 ) - P 2 . 1 3 )  
{ f i 3 ) P 2  13 

x [ [ $ ( r l ) ” ’ x . .  . x $ ( r N - K - k ) i l ) ] i f 2 ’  

(A161 H I  ‘f1J ‘/b2 13 
[ $ / ( r N - k + l  9 . . . 9 r N ) i l k l $ ( r N - ~ - k + l  9 .  . . 9 r N - k ) (  1 l m  

(see the appendix of I for the last rearrangement phase). The multiplicity label POb in 

u ( { f l } { f 2 } { f ) { f 3 ) ;  {fl2}Pl2Pl2,3{f23}P23~l,~3) 

indicates that in general there is a multiplicity to be considered for the coupling 
{ a } O { b }  while its absence (denoted - )  indicates that the coupling is multiplicity free. 

To obtain the state (A16) in a form in which it can be evaluated through an overlap 
norm with state (A15), let it be acted upon by the product P of permutation operators 
which rearranges the particle numbers in the last two functions. Assuming k s  w ( i f  
otherwise, we would reverse the role of the bra (A15) and the ket (A16)) 

‘ =  p k * .  ’ p 2 ~ l p N ~ N - ~ ~ p ~ N - l ) ~ N - ~ - l ) .  . . P ( N - k + Z ) ( N - H - k + 2 ) P ( N - k + l ) ( N - ~ - k + l )  (A17) 

where Ps are cyclic interchanges of the ( w  - k )  particles labelled N - s + 1, N - k,  
N -  k - 1 , .  . . , N -  W +  1. Thus 
P [ $ ( r N - k + l ,  ‘ . . 7 rN)ilk)$(rN-~-k+l I .  * .  7 r N - k ) ‘  W I  ]mi: i f  1 

(A18) = [ $ ( r ~ - ~ - k + i , .  r N - % )  { I  I $ ( r h - W + l , . .  , r N ) a  ‘* I  1,;: i f  I 
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I f s  

x y.  m ,YN...yN-m+l{abl...bs-lb,+l . . .bw,  } { w } b $ N - m - ~ - l  * .  . y l )  (A21) 

(see equation (23) of Hecht (1975)). 
In the most general case, illustrated by figure 2(a) ,  with 

i, < i, < . . . < ik {ala  2 . . . a k } = { i l i 2 . . . i k }  

and 

{ a l a ; .  . . U ; }  = { j ,  j 2 . .  . j k }  j , < j z <  . . .  < j h  

and with all a: different from all a,, the set of k i and k j never occupy a common 
square in the Young tableau. Equation (A20) leads to the evaluation of the Racah 
coefficient 

U({wHm - A ‘ k ’ ( j ) > { f H 1 k } ;  { f - A ‘ h ) ( i ) H m > )  
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I 

( b )  

Figure 2. Young tableaux corresponding to the Racah coefficient (A20). ( a )  General case; 
( b )  special case. 

where {f- A‘k’( i)} designates a tableau with one square removed from rows i, , . . . , ik ; 
similarly for {m - A ( k ) ( j ) } ,  as illustrated by figure 2 ( a ) .  

In this case for each is ,  there is at least one member of the set { b ,  . . . bw} for which 
T , ~ ~  = 1 so that only the second term of (A21) gives a non-zero contribution. Repeated 
application of (A21) then yields 

k n PN-r+l .N-r -w+l l { i l iZ  . . . i k } { l x ) { j l j 2 . .  . j k c l  . . . C w - k } ( w ) Y N - w , - k .  . . Y l )  
r = 1  

= F k ( i , j ) 1 { i l i 2 . .  . ikCl  . . * c w - k } { w ) { j l j 2 . .  . j k } ( l k ) Y N - w - k . .  9 Y l )  

+unwanted terms ( A 2 2 a )  

where 

(A22 b )  

Note that the squares labelled by the c, are illustrated by hatched squares in figure 
2. The various factors in (A22b) have the following values: 

T i j ,  = S( ir  - i s ) ( . L s  - m j ,  +jr - i s )  

~ , ~ ~ , , ( l - l / ~ f ~ ~ , ) l / ~ = [ ( f ; ,  - f ; ~ , + i ~ , - i ~ + l ) ( f ; ~ - f ; ~ , + i ~ , - i s - 1 ) ] ” 2  s < s I  

7 J J I ’  ( l - l / T ~ ~ j , , ) ” z = [ ( ~ j ,  -mj , ,+j , , - j r+l ) (mj ,  -rn,,.+Jt~-Jr-l)]”’ t <  t’ 
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( J , - m v + v - i , )  
x i i  y =  

( m, - + j, - v + 1) 
U # ( J i . J 2 ,  . . , J A )  

In the special case, illustrated in figure 2(b), when one of the is (e.g. i4) occupies 
the same square as one of the j, (e.g. j,), action with PN-k+l ,N-k- -w+l  requires both 
terms of (A21) but action with all subsequent operators within P requires only the 
second term of (A21). In the special case when i9 = j ,  (i.e. iq occupies the same square 
as j, in the Young tableau), the matrix element of P is 

({ i l  . . . i q - l i q + l  . . . ikcl . . . cw-k+J(w)Ijl  . . .j,.. . j d { l I ) Y N - w - k . .  . ~ l l  

x Pkil . . . i,. . . ik){lr){il . . .jo-lju+l . . 
= Fk(i,j) (A25) 

. .  

. . . Cw-k+l}(w)YN-w-k. . . Y,) 

where Fk(i ,  j )  is identical with that given in (A24). Iterating this process, we can see 
that the same result holds when two or more of the i occupy the same squares as two 
of the j up to the special case when all k i occupy the same squares as the k j .  

4 ({f}) - 4 ( { f  - A ( k ) (  i ) }  = i ( n + 1 - 2a)fa - 4 

Finally, using the phase factor relations 
n n 

(n + 1 - 2a)  ( f a  + A:”( i ) )  
a = l  a = l  

k 

= + + k ( n + l ) -  c is (‘426) 
s = l  

for the phase in (A19), the general result for the U(n)  Racah coefficient of type ( 3 )  
follows: 

w ) { m  - A(kl(j)}{f}{l k}; i f -  A(k)(i)}{m}) 
k 

= n s(j, - i s ) )  
s,r=l 

( m ,  -J5  + is - v )  
( m ,  - mj, +js - v + 1) x i i  ” = I  
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